Combinational Complexity Measures as a Function of Fan-Out

D. L. Johnson

Communications Research Section

J. E. Savage

Engineering Division, Brown University

L. Welch

Electrical Engineering Dept., University of California at Los Angeles

If $C_s(f_1, \dots, f_L)$ is the fan-out s combinational complexity of the functions f_1, f_2, \dots, f_L with respect to straight-line algorithms (or combinational machines) of fan-in r, then it is shown that

$$C_{\infty}(f_1, \cdots, f_L) \leq C_s(f_1, \cdots, f_L)$$

$$\leq \left(\frac{d(r-1)}{s-1} + 1\right) C_{\infty}(f_1, \cdots, f_L) + \frac{d}{s-1}(L-N)$$

where N is the number of variables on which f_1, \dots, f_L depend and $d = C_s(I)$ where I is the identity function in one variable. Thus, a well-designed combinational machine or algorithm will not have a fan-out which is more than several times its fan-in.

I. Introduction

In this paper we develop bounds on the fan-out s combinational complexity of functions. These bounds show that the combinational complexity of functions has a weak dependence on fan-out when $s \ge 2$.

II. Bounds on Combinational Complexity

Before we develop the promised bounds, we state the following definitions which are needed in the sequel.

DEFINITION 1. Let Ω be a set of functions over the set Σ , such that if $h_i : \epsilon \Omega$, then $h_i : \Sigma^{n_i} \to \Sigma$. Let

$$\Gamma = \Sigma \cup \{X_1, X_2, \cdots, X_N\}$$

Then, an (Ω, Γ) algorithm (or "straight-line" algorithm) is a K-tuple $\beta = (\beta_1, \beta_2, \dots, \beta_K)$ where either $\beta_k \in \Gamma$ or $\beta_k = (h_i; k_1, k_2, \dots, k_{n_i}), h_i \in \Omega, 1 \leq k_i < k$. The set of functions $(\beta_1, \beta_2, \dots, \beta_K)$ is associated with β where $\beta_k = \beta_k$ if $\beta_k \in \Gamma$ and $\beta_k = h_i (\beta_{k_1}, \dots, \beta_{k_{n_i}})$ if

$$\beta_k = (h_i; k_1, k_2, \cdots, k_{n_i})$$

An algorithm β is said to compute the functions

$$f_t: \Sigma^{m_t} \to \Sigma, \quad m_t \leq N, \quad 1 \leq \ell \leq L$$

if there exist $\beta_{m_1}, \dots, \beta_{m_L}$ such that $f_i = \beta_{m_i}$

The fan-in of Ω is

$$r = \max_i n_i$$

where $h_i: \epsilon \Omega$, $h_i: \Sigma^{n_i} \to \Sigma$. If β computes f_1, f_2, \dots, f_L where $f_i = \beta_{m_i}, 1 \le \ell \le L$, let γ_i the number of steps of β which use β_i , if $\beta_i \notin \Sigma$, and $\gamma_i = 0$, $\beta_i \in \Sigma$ and let $\theta_i = \gamma_i$, $i \ne m_1, m_2, \dots, m_L$ and $\theta_i = \gamma_i + 1$ otherwise. Then, the fan-out of β is

$$s = \max_{i} \theta_{i}$$

DEFINITION 2. The combinational complexity with fanouts of

$$f_1: \Sigma^{m_1} \to \Sigma, \qquad 1 \leq \ell \leq L, \qquad C_s(f_1, \cdots, f_L)$$

is the smallest number of steps $\beta_k \notin \Gamma$ of any (Ω, Γ) algorithm which computes these functions, if one such exists; otherwise $C_s(f_1, \dots, f_L)$ is ∞ . Associated with any (Ω, Γ) algorithm is a graph G in which vertices correspond to steps of the algorithm and edges are directed and ordered from vertices corresponding to $\beta_{k_1}, \dots, \beta_{k_{n_i}}$ to the vertex corresponding to β_k if $\beta_k = (h_i; \beta_{k_1}, \dots, \beta_{k_{n_i}})$. Vertices corresponding to steps $\beta_k \in \Gamma$ are called source vertices.

Combinational machines are circuits which correspond to the graphs of (Ω, Γ) algorithms in which $\Sigma = \{0, 1\}$ and Ω is a set of Boolean functions; thus, there is an equivalence between combinational machines and straight-line algorithms. These algorithms are called "straight-line" because they do not permit loops or conditional branching. We now state the principal result of this article.

THEOREM. Let f_1, \dots, f_L be distinct functions over Σ which depend on N variables. Let Ω have fan-in r and let it be such that an (Ω, Γ) algorithm exists for the identity function I in one variable. Then

$$C_{\infty}(f_1, \dots, f_2) \leq C_s(f_1, \dots, f_L)$$

$$\leq \left(\frac{d(r-1)}{s-1} + 1\right)$$

$$\times C_{\infty}(f_1, \dots, f_L) + \frac{d}{s-1}(L-N)$$

where $d = C_s(I)$.

Proof. Let β be a straight-line algorithm with fan-out s which computes f_1, \dots, f_L with $C_s(f_1, \dots, f_L)$ operations. The directed graph of β has N source vertices and L vertices identified with the distinct functions f_1, \dots, f_L . To the graph G of β add L vertices with edges directed into them from the vertices identified with these functions. The number of edges incident upon vertices in this new graph G' is at most $rC_{\infty}(f_1, \dots, f_L) + L$ since each of the original vertices has at most r edges directed into them. Thus, if θ_i edges are directed away from the ith vertex of G' then

$$\sum_{i} \theta_{i} \leq rC_{\infty}(f_{1}, \cdots, f_{L}) + L$$

where the sum is over all vertices except those associated with constants.

Since Ω is complete, the identity function on one variable I(x) can be constructed with some number, e.g., d, of elements from it with fan-out s. For each i, if the ith vertex of the graph G' has θ_i edges directed away from it, we can add $h(\theta_i, s)$ copies of the algorithm realizing I(x) to produce a graph G'' which has fan-out s. Here

$$h(\theta_i, s) \leq \frac{\theta_i - 1}{s - 1}$$

so the number of elements in G'' is bounded above by

$$\frac{d}{s-1}\sum_{i}\left(heta_{i}-1
ight)+C_{\infty}$$

where the sum on i is taken over all vertices of G including all source vertices other than those associated with constants. Since $C_s(f_1, \dots, f_L)$ is the minimum number of operations required to realize f_1, \dots, f_L with fan-out s, it follows that

$$C_s(f_1, \dots, f_L) \leq \frac{d}{s-1} (rC_{\infty}(f_1, \dots, f_L) + L - C_{\infty} - N) + C_{\infty}$$

The left-hand equality of the theorem follows since $C_s(f_1, \dots, f_L)$ is a non-increasing function of s. QED.

The significance of this result is that all of the complexity measures $C_2, C_3, \dots, C_{\infty}$, differ by at most a constant. Also, C_s approaches C_{∞} with increasing s when r is fixed. For many sets Ω , d = 1; for example, this is true for the set of addition, subtraction, multiplication and divi-

sion over the reals and the set of AND, OR and NOT over the set $\{0,1\}$. However, d=2 for the set Ω containing only NAND over $\{0,1\}$.

The combinational complexity of a function with fanout 1, C_1 , can differ substantially from its combinational complexity with unlimited fan-out. Subbotovskaya (Ref. 1) has shown that the Boolean function $f(x_1, \dots, x_N) = X_1 \oplus \dots \oplus X_N$ where \bigoplus denotes the EXCLUSIVE OR has $C_1(f) > a_1N^{3/2}$ for some constant a_1 when Ω consists of AND, OR and NOT and $C_{\infty}(f) < a_2N$ for some other constant a_2 .

Reference

1. Subbotovskaya, B. A., "Realizations of Linear Functions by Formulas Using ∧, &, ¬," Sov. Math. Dokl., Vol. 2, 1961.